
1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 1/20

Revisiting Functions
In [1]:

Hello, world

#include <stdio.h>

int main(void)
{
 printf("Hello, world");
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 2/20

Getting the Absolute Value of an Integer
Expression

In [2]:

The absolute value of 1 is 1
The absolute value of -1 is 1
The absolute value of 0 is 0
The absolute value of -2 is 2

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 printf("The absolute value of %d is %d\n", 1, abs(1));
 printf("The absolute value of %d is %d\n", -1, abs(-1));
 printf("The absolute value of %d is %d\n", 0, abs(0));
 printf("The absolute value of %d is %d\n", 3-5, abs(3-5));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 3/20

Math Functions in math.h

In [3]:

sine of 0.500000 is 0.479426
cosine of 0.500000 is 0.877583
tangent of 0.500000 is 0.546302

Math Function Purpose
sin(radians) Returns the sine of angle in radians
cos(randians) Returns the cosine of an angle in radians
tan(radians) Returns the tangent of an angle in radians
asin(radians) Returns the arcsine of an angle in radians
atan(radians) Returns the arctangent of an angle in radians
acos(radians) Returns the arccosine of an angle in radians
cosh(radians) Returns the hyperbolic cosine of an angle in radians
sinh(radians) Returns the hyperbolic sine of an angle in radians
tanh(radians) Returns the hyperbolic tangent of an angle in radians
cabs(complex) Returns the absolute value of a complex number

#include <stdio.h>
#include <math.h>

int main(void)
{
 float radians = 0.5;

 printf("sine of %f is %f\n", radians, sin(0.5));
 printf("cosine of %f is %f\n", radians, cos(0.5));
 printf("tangent of %f is %f\n", radians, tan(0.5));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 4/20

Performing an Integer Division
In [4]:

20 divided by 7 is 2 remainder 6

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 div_t result;

 result = div(20, 7);

 printf("20 divided by 7 is %d remainder %d\n", result.quot, result.rem);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 5/20

Determining the Value of e to the x
In [5]:

Determining the Absolute Value of a Floating-
Point Number

In [6]:

The result of e(0.100000) is 1.105171

Absolute value of -3.140000 is 3.140000

#include <stdio.h>
#include <math.h>

int main(void)
{
 printf("The result of e(%f) is %f\n", 0.1, exp(0.1));
}

#include <stdio.h>
#include <math.h>

int main(void)
{
 double value = -3.14;

 printf("Absolute value of %f is %f\n", value, fabs(value));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 6/20

Determing the Remainder of a Floating-Point
Division
20.5 fmod 3.0 => 2.5 (6.0 Remainder 2.5)

In [7]:

/tmp/tmpr2wkqijm.out: symbol lookup error: /tmp/tmpctobl2mh.out: undefined symb
ol: fmod
[C kernel] Executable exited with code 127

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{
 double numerator = 20.5;
 double denominator = 3.0;

 printf("%f mod %f is %f", numerator, denominator, fmod(numerator, denominator)
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 7/20

Calculating x times 2 raised to e
In [8]:

x is 1.250000 the mantissa is 0.625000 the exponent is 1

/tmp/tmpr2wkqijm.out: symbol lookup error: /tmp/tmpbltiext_.out: undefined symb
ol: pow
[C kernel] Executable exited with code 127

#include <stdio.h>
#include <math.h>

int main(void)
{
 double x = 1.25;
 double mantissa;
 int exponent;

 mantissa = frexp(x, &exponent);
 printf("x is %f the mantissa is %f the exponent is %d\n", x, mantissa, exponent
 double value = mantissa * pow(2.0, exponent);
 printf("The value is %f\n", value);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 8/20

Determining the Natural Log of an
Expression

In [9]:

Determining the Result of Log10x

The natural log of 512.0 is 6.238325

#include <stdio.h>
#include <math.h>

int main(void)
{
 printf("The natural log of 512.0 is %f", log(512.0));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 9/20

In [10]:

Breaking a value of Type Double into Whole and
Real Parts

The log10x of 10 is 1.000000
The log10x of 100 is 2.000000
The log10x of 1000 is 3.000000

#include <stdio.h>
#include <math.h>

int main(void)
{
 printf("The log10x of 10 is %f\n", log10(10.0));
 printf("The log10x of 100 is %f\n", log10(100.0));
 printf("The log10x of 1000 is %f\n", log10(1000.0));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 10/20

In [11]:

Calculating the Result of 10 Raised to x

Value 5.432100 Whole 5.000000 Fraction 0.432100

#include <stdio.h>
#include <math.h>

int main(void)
{
 double value = 5.4321;
 double whole, fraction;

 fraction = modf(value, &whole);

 printf("Value %f Whole %f Fraction %f\n", value, whole, fraction);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 11/20

In [12]:

/tmp/tmpumdb2rto.c: In function ‘main’:
/tmp/tmpumdb2rto.c:6:37: warning: implicit declaration of function ‘pow10’; did
you mean ‘powl’? [-Wimplicit-function-declaration]
 printf("10 raised to -1 is %f\n", pow10(-1));
 ^~~~~
 powl
/tmp/tmpumdb2rto.c:6:31: warning: format ‘%f’ expects argument of type ‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
 printf("10 raised to -1 is %f\n", pow10(-1));
 ~^ ~~~~~~~~~
 %d
/tmp/tmpumdb2rto.c:7:30: warning: format ‘%f’ expects argument of type ‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
 printf("10 raised to 0 is %f\n", pow10(0));
 ~^ ~~~~~~~~
 %d
/tmp/tmpumdb2rto.c:8:30: warning: format ‘%f’ expects argument of type ‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
 printf("10 raised to 1 is %f\n", pow10(1));
 ~^ ~~~~~~~~
 %d
/tmp/tmpumdb2rto.c:9:30: warning: format ‘%f’ expects argument of type ‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
 printf("10 raised to 2 is %f\n", pow10(2));
 ~^ ~~~~~~~~
 %d
/tmp/tmpr2wkqijm.out: symbol lookup error: /tmp/tmpjfoj_02i.out: undefined symb
ol: pow10
[C kernel] Executable exited with code 127

#include <stdio.h>
#include <math.h>

int main(void)
{
 printf("10 raised to -1 is %f\n", pow10(-1));
 printf("10 raised to 0 is %f\n", pow10(0));
 printf("10 raised to 1 is %f\n", pow10(1));
 printf("10 raised to 2 is %f\n", pow10(2));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 12/20

Generating a Random Number
In [13]:

In [14]:

1804289383
846930886
1681692777
1714636915
1957747793

1804289383
846930886
1681692777
1714636915
1957747793

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 for (int i = 0; i < 5; i++)
 printf("%d\n", rand());
}

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 srand(0);

 for (int i = 0; i < 5; i++)
 printf("%d\n", rand());
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 13/20

In [15]:

Calculating the Square Root

1645315998
1366626377
1133947694
14122165
1939924854

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{
 time_t systemTime = 0; // seed with seconds since 1/1/1970
 srand(time(&systemTime));

 for (int i = 0; i < 5; i++)
 printf("%d\n", rand());
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 14/20

In [16]:

Getting Time in Seconds Since 1/1/1970
In [17]:

Square root of 25 is 5.000000
Square root of 100 is 10.000000
Square root of 3 is 1.732051

Seconds since 1/1/1970 1612135626

#include <stdio.h>
#include <math.h>

int main(void)
{
 printf("Square root of 25 is %f\n", sqrt(25));
 printf("Square root of 100 is %f\n", sqrt(100));
 printf("Square root of 3 is %f\n", sqrt(3));
}

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t seconds;
 seconds = time(0);

 printf("Seconds since 1/1/1970 %ld", seconds);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 15/20

Displaying the Current Date
In [18]:

Current date and time Sun Jan 31 23:27:06 2021

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t seconds;
 seconds = time(0);

 printf("Current date and time %s\n", ctime(&seconds));
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 16/20

Delaying a Specific Number of Seconds
In [*]:

Starting delay

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t startTime, endTime;

 printf("Starting delay\n");
 startTime = time(0);

 do {
 endTime = time(0);
 } while (endTime - startTime < 5);

 printf("Done.");
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 17/20

Getting Date and Time Components

In [*]:

In [*]:

struct tm
{
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon; // 0 thru 11
 int tm_year; // year - 1900
 int tm_wday; // Sun 0 - Sat 6
 int tm_yday; // 1 - 365 day of year
 int tm_isdst; // 1 if daylight savings 0 otherwise
}

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm *currentDate;
 time_t seconds;

 time(&seconds);

 currentDate = localtime(&seconds);
 printf("Date: %d-%d-%d\n", currentDate->tm_mon+1, currentDate->tm_mday, currentD
 printf("Time: %d:%02d\n", currentDate->tm_hour, currentDate->tm_min);
}

See the TZ environment entry to set timezone

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm *currentDate;
 time_t seconds;

 time(&seconds);

 int timezone = -7*60*60; // offset local difference from GMT
 seconds += timezone;

 currentDate = localtime(&seconds);
 printf("Date: %d-%d-%d\n", currentDate->tm_mon+1, currentDate->tm_mday, currentD
 printf("Time: %d:%02d\n", currentDate->tm_hour, currentDate->tm_min);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 18/20

Greenwich Mean Time
In [*]:

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm *currentDate;
 time_t seconds;

 time(&seconds);

 currentDate = gmtime(&seconds);
 printf("Date: %d-%d-%d\n", currentDate->tm_mon+1, currentDate->tm_mday, currentD
 printf("Time: %d:%d\n", currentDate->tm_hour, currentDate->tm_min);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 19/20

Converting a Date to Seconds Since Midnight
1/1/1970

In [*]:

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm currentDate;
 time_t seconds;

 currentDate.tm_mday = 22;
 currentDate.tm_mon = 1;
 currentDate.tm_year = 2021 - 1900;
 currentDate.tm_hour = 12;
 currentDate.tm_min = 30;

 seconds = mktime(¤tDate);
 printf("Seconds %ld\n", seconds);
}

1/31/2021 C Programming-Using C's Built-In Functions

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 20/20

What You will Learn Next

C programs make extensive use of character strings such as "Hello, world." You
have learned that C stores strings as an array using the '\0' character to mark
the last character in the string.

printf("Hello, world");

