1/31/2021 C Programming-Using C's Built-In Functions

Hands On C
500 Working Programs

Using C’s Built-In
Functions

Revisiting Functions

In [1]: #include <stdio.h>

int main(void)

{
}

printf("Hello, world");

Hello, world

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 1/20

1/31/2021

Getting the Absolute Value of an Integer
Expression

In [2]: #include <stdio.h>
#include <stdlib.h>

int main(void)

{

The
The
The
The

C Programming-Using C's Built-In Functions

printf("The absolute value
printf("The absolute value
printf("The absolute value
printf("The absolute value

absolute value
absolute value
absolute value
absolute value

of 1 is 1
of -1 is 1
of 0 is ©
of -2 is 2

of %d

of %d i

of %d
of %d

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb

is

is
is

%d\n",
%d\n",
%d\n",
%d\n",

1, abs(1));

-1, abs(-1));
0, abs(9));
3-5, abs(3-5));

2/20

1/31/2021 C Programming-Using C's Built-In Functions

Math Functions in math.h

Math Function Purpose

sin(radians) Returns the sine of angle in radians

cos(randians) Returns the cosine of an angle in radians
tan(radians) Returns the tangent of an angle in radians
asin(radians) Returns the arcsine of an angle in radians
atan(radians) Returns the arctangent of an angle in radians
acos(radians) Returns the arccosine of an angle in radians
cosh(radians) Returns the hyperbolic cosine of an angle in radians
sinh(radians) Returns the hyperbolic sine of an angle in radians
tanh(radians) Returns the hyperbolic tangent of an angle in radians
cabs(complex) Returns the absolute value of a complex number

In [3]: #include <stdio.h>
#include <math.h>

int main(void)

{

float radians = 0.5;

printf("sine of %f is %f\n", radians, sin(9.5));
printf("cosine of %f is %f\n", radians, cos(9.5));
printf("tangent of %f is %f\n", radians, tan(90.5));

sine of 0.500000 is 0.479426
cosine of ©.500000 is 0.877583
tangent of ©.500000 is 0.546302

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb

3/20

1/31/2021 C Programming-Using C's Built-In Functions

Performing an Integer Division

In [4]: #include <stdio.h»>
#include <stdlib.h>

int main(void)
{
div_t result;

result = div(20, 7);

printf("20 divided by 7 is %d remainder %d\n", result.quot, result.rem);
}

20 divided by 7 is 2 remainder 6

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 4/20

1/31/2021 C Programming-Using C's Built-In Functions

Determining the Value of e to the x

In [5]: #include <stdio.h>
#include <math.h>

int main(void)

{
}

printf("The result of e(%f) is %f\n", 0.1, exp(0.1));

The result of e(0.100000) is 1.105171

Determining the Absolute Value of a Floating-
Point Number

In [6]: #include <stdio.h>
#include <math.h>

int main(void)
{
double value = -3.14;

printf("Absolute value of %f is %f\n", value, fabs(value));
¥

Absolute value of -3.140000 is 3.140000

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 5/20

1/31/2021 C Programming-Using C's Built-In Functions

Determing the Remainder of a Floating-Point
Division

20.5 fmod 3.0 => 2.5 (6.0 Remainder 2.5)

In [7]: #include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)

{

double numerator = 20.5;

double denominator = 3.0;

printf("%f mod %f is %f", numerator, denominator, fmod(numerator, denominator)
}

/tmp/tmpr2wkgijm.out: symbol lookup error: /tmp/tmpctobl2mh.out: undefined symb
ol: fmod
[C kernel] Executable exited with code 127

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 6/20

1/31/2021 C Programming-Using C's Built-In Functions

Calculating x times 2 raised to e

In [8]: #include <stdio.h>
#include <math.h>

int main(void)

{
double x = 1.25;
double mantissa;
int exponent;

mantissa = frexp(x, &exponent);

printf("x is %f the mantissa is %f the exponent is %d\n", x, mantissa, exponent
double value = mantissa * pow(2.0, exponent);

printf("The value is %f\n", value);

X is 1.250000 the mantissa is ©0.625000 the exponent is 1
/tmp/tmpr2wkqgijm.out: symbol lookup error: /tmp/tmpbltiext .out: undefined symb

ol: pow
[C kernel] Executable exited with code 127

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 7120

1/31/2021 C Programming-Using C's Built-In Functions

Determining the Natural Log of an
Expression

In [9]: #include <stdio.h>
#include <math.h>

int main(void)

{
}

printf("The natural log of 512.0 is %f", log(512.0));

The natural log of 512.0 is 6.238325

Determining the Result of Log10x

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 8/20

1/31/2021 C Programming-Using C's Built-In Functions

In [10]: #include <stdio.h>
#include <math.h>

int main(void)

{
printf("The loglox of 10 is %f\n", logle(10.90));
printf("The loglox of 100 is %f\n", logle(100.0));
printf("The loglox of 1000 is %f\n", 1ogle(1000.0));

}

The logleox of 10 is 1.000000
The loglox of 100 is 2.000000
The loglex of 1000 is 3.000000

Breaking a value of Type Double into Whole and
Real Parts

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 9/20

1/31/2021 C Programming-Using C's Built-In Functions

In [11]: #include <stdio.h>
#include <math.h>

int main(void)
{

double value = 5.4321;
double whole, fraction;

fraction = modf(value, &whole);

printf("vValue %f Whole %f Fraction %f\n", value, whole, fraction);

Value 5.432100 Whole 5.000000 Fraction ©.432100

Calculating the Result of 10 Raised to x

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 10/20

1/31/2021

In [12]:

C Programming-Using C's Built-In Functions

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("10 raised to -1 is %f\n", powle(-1));
printf("10 raised to © is %f\n", powl@(0));
printf("10 raised to 1 is %f\n", powl0(1l));
printf("10 raised to 2 is %f\n", powl@(2));

/tmp/tmpumdb2rto.c: In function ‘main’:
/tmp/tmpumdb2rto.c:6:37: warning: implicit declaration of function ‘powl®’; did
you mean ‘powl’? [-Wimplicit-function-declaration]

printf("10 raised to -1 is %f\n", powl@(-1));

ANNNN

powl
/tmp/tmpumdb2rto.c:6:31: warning: format ¢%f’ expects argument of type €‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
printf("10 raised to -1 is %f\n", powle(-1));

~N

%d
/tmp/tmpumdb2rto.c:7:30: warning: format ‘%f’ expects argument of type €‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
printf("10 raised to @ is %f\n", powl@(0));

N

N AN

~

%d
/tmp/tmpumdb2rto.c:8:30: warning: format ‘%f’ expects argument of type €‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
printf("10 raised to 1 is %f\n", powl@(1));

N

LNZNT VY VP NT.NT V) V)

~

%d
/tmp/tmpumdb2rto.c:9:30: warning: format ‘%f’ expects argument of type €‘doubl
e’, but argument 2 has type ‘int’ [-Wformat=]
printf("10 raised to 2 is %f\n", powl0(2));

N

N A AN

%d
/tmp/tmpr2wkgijm.out: symbol lookup error: /tmp/tmpjfoj_02i.out: undefined symb
ol: powl@
[C kernel] Executable exited with code 127

[NTNTVY VP NT.NT V7 N3

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb

11/20

1/31/2021

In [13]:

In [14]:

C Programming-Using C's Built-In Functions

Generating a Random Number

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
for (int i = 0; i < 5; i++)
printf("%d\n", rand());

1804289383
846930886

1681692777
1714636915
1957747793

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
srand(9);

for (int i = 0; i < 5; i++)
printf("%d\n", rand());

1804289383
846930886

1681692777
1714636915
1957747793

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb

12/20

1/31/2021 C Programming-Using C's Built-In Functions

In [15]: #include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)

{
time_t systemTime = 0; // seed with seconds since 1/1/1970
srand(time(&systemTime));

for (int i = 0; i < 5; i++)
printf("%d\n", rand());

1645315998
1366626377
1133947694
14122165

1939924854

Calculating the Square Root

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 13/20

1/31/2021 C Programming-Using C's Built-In Functions

In [16]: #include <stdio.h>
#include <math.h>

int main(void)

{
printf("Square root of 25 is %f\n", sqrt(25));
printf("Square root of 100 is %f\n", sqrt(100));
printf("Square root of 3 is %f\n", sqrt(3));

}

Square root of 25 is 5.000000
Square root of 100 is 10.000000
Square root of 3 is 1.732051

Getting Time in Seconds Since 1/1/1970

In [17]: #include <stdio.h>
#include <time.h>

int main(void)

{

time_t seconds;

seconds = time(9);

printf("Seconds since 1/1/1970 %1d", seconds);
}

Seconds since 1/1/1970 1612135626

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 14/20

1/31/2021 C Programming-Using C's Built-In Functions

Displaying the Current Date

In [18]: #include <stdio.h>
#include <time.h>

int main(void)

{

time_t seconds;

seconds = time(0);

printf("Current date and time %s\n", ctime(&seconds));
}

Current date and time Sun Jan 31 23:27:06 2021

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 15/20

1/31/2021 C Programming-Using C's Built-In Functions

Delaying a Specific Number of Seconds

In [*]: #include <stdio.h>
#include <time.h>

int main(void)
{

time_t startTime, endTime;

printf("Starting delay\n");
startTime = time(9);

do {
endTime = time(0);

} while (endTime - startTime < 5);

printf("Done.");

Starting delay

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 16/20

1/31/2021 C Programming-Using C's Built-In Functions

Getting Date and Time Components

struct tm
{
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon; // @ thru 11
int tm_year; // year - 1900
int tm_wday; // Sun @ - Sat 6
int tm_yday; // 1 - 365 day of year
int tm_isdst; // 1 if daylight savings @ otherwise

In [*]: #include <stdio.h>
#include <time.h>

int main(void)

{

struct tm *currentDate;
time_t seconds;

time(&seconds);
currentDate = localtime(&seconds);

printf("Date: %d-%d-%d\n", currentDate->tm_mon+l, currentDate->tm_mday, current
printf("Time: %d:%02d\n", currentDate->tm_hour, currentDate->tm_min);

See the TZ environment entry to set timezone

In [*]: #include <stdio.h>
#include <time.h>

int main(void)

{

struct tm *currentDate;
time_t seconds;

time(&seconds);

int timezone = -7*60*60; // offset local difference from GMT
seconds += timezone;

currentDate = localtime(&seconds);

printf("Date: %d-%d-%d\n", currentDate->tm_mon+l, currentDate->tm_mday, current
printf("Time: %d:%02d\n", currentDate->tm_hour, currentDate->tm_min);

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 17/20

1/31/2021 C Programming-Using C's Built-In Functions

Greenwich Mean Time

In [*]: #include <stdio.h>
#include <time.h>

int main(void)

{

struct tm *currentDate;
time_t seconds;

time(&seconds);
currentDate = gmtime(&seconds);

printf("Date: %d-%d-%d\n", currentDate->tm_mon+l, currentDate->tm_mday, current
printf("Time: %d:%d\n", currentDate->tm_hour, currentDate->tm_min);

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 18/20

1/31/2021 C Programming-Using C's Built-In Functions

Converting a Date to Seconds Since Midnight
1/1/1970

In [*]: #include <stdio.h>
#include <time.h>

int main(void)

{
struct tm currentDate;
time_t seconds;

currentDate.tm_mday = 22;
currentDate.tm_mon = 1;
currentDate.tm_year = 2021 - 1900;
currentDate.tm_hour = 12;
currentDate.tm_min = 30;

seconds = mktime(¤tDate);
printf("Seconds %1d\n", seconds);

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 19/20

1/31/2021 C Programming-Using C's Built-In Functions

What You will Learn Next

C programs make extensive use of character strings such as "Hello, world." You

have learned that C stores strings as an array using the '\@' character to mark
the last character in the string.

printf("Hello, world");

localhost:8888/notebooks/C Programming-Using C's Built-In Functions.ipynb 20/20

